Given a pre-trained language model, how can we efficiently compress it without retraining? Retraining-free structured pruning algorithms are crucial in pre-trained language model compression due to their significantly reduced pruning cost and capability to prune large language models. However, existing retraining-free algorithms encounter severe accuracy degradation, as they fail to preserve the useful knowledge of pre-trained models. In this paper, we propose K-pruning (Knowledge-preserving pruning), an accurate retraining-free structured pruning algorithm for pre-trained language models. K-pruning identifies and prunes attention heads and neurons deemed to be superfluous, based on the amount of their inherent knowledge. K-pruning applies an iterative process of pruning followed by knowledge reconstruction for each sub-layer to preserve the knowledge of the pre-trained models. Consequently, K-pruning shows up to 58.02%p higher F1 score than existing retraining-free pruning algorithms under a high compression rate of 80% on the SQuAD benchmark.