Conventional vision algorithms adopt a single type of feature or a simple concatenation of multiple features, which is always represented in a high-dimensional space. In this paper, we propose a novel unsupervised spectral embedding algorithm called Kernelized Multiview Projection (KMP) to better fuse and embed different feature representations. Computing the kernel matrices from different features/views, KMP can encode them with the corresponding weights to achieve a low-dimensional and semantically meaningful subspace where the distribution of each view is sufficiently smooth and discriminative. More crucially, KMP is linear for the reproducing kernel Hilbert space (RKHS) and solves the out-of-sample problem, which allows it to be competent for various practical applications. Extensive experiments on three popular image datasets demonstrate the effectiveness of our multiview embedding algorithm.