Jet flavour classification is of paramount importance for a broad range of applications in modern-day high-energy-physics experiments, particularly at the LHC. In this paper we propose a novel architecture for this task that exploits modern deep learning techniques. This new model, called DeepJet, overcomes the limitations in input size that affected previous approaches. As a result, the classification performance improves and the number of classes to be predicted can be increased. Such, DeepJet is paving the way to an all-inclusive jet classifier.