Zero-shot Referring Image Segmentation (RIS) identifies the instance mask that best aligns with a specified referring expression without training and fine-tuning, significantly reducing the labor-intensive annotation process. Despite achieving commendable results, previous CLIP-based models have a critical drawback: the models exhibit a notable reduction in their capacity to discern relative spatial relationships of objects. This is because they generate all possible masks on an image and evaluate each masked region for similarity to the given expression, often resulting in decreased sensitivity to direct positional clues in text inputs. Moreover, most methods have weak abilities to manage relationships between primary words and their contexts, causing confusion and reduced accuracy in identifying the correct target region. To address these challenges, we propose IteRPrimE (Iterative Grad-CAM Refinement and Primary word Emphasis), which leverages a saliency heatmap through Grad-CAM from a Vision-Language Pre-trained (VLP) model for image-text matching. An iterative Grad-CAM refinement strategy is introduced to progressively enhance the model's focus on the target region and overcome positional insensitivity, creating a self-correcting effect. Additionally, we design the Primary Word Emphasis module to help the model handle complex semantic relations, enhancing its ability to attend to the intended object. Extensive experiments conducted on the RefCOCO/+/g, and PhraseCut benchmarks demonstrate that IteRPrimE outperforms previous state-of-the-art zero-shot methods, particularly excelling in out-of-domain scenarios.