Recently, text-guided image manipulation has received increasing attention in the research field of multimedia processing and computer vision due to its high flexibility and controllability. Its goal is to semantically manipulate parts of an input reference image according to the text descriptions. However, most of the existing works have the following problems: (1) text-irrelevant content cannot always be maintained but randomly changed, (2) the performance of image manipulation still needs to be further improved, (3) only can manipulate descriptive attributes. To solve these problems, we propose a novel image manipulation method that interactively edits an image using complex text instructions. It allows users to not only improve the accuracy of image manipulation but also achieve complex tasks such as enlarging, dwindling, or removing objects and replacing the background with the input image. To make these tasks possible, we apply three strategies. First, the given image is divided into text-relevant content and text-irrelevant content. Only the text-relevant content is manipulated and the text-irrelevant content can be maintained. Second, a super-resolution method is used to enlarge the manipulation region to further improve the operability and to help manipulate the object itself. Third, a user interface is introduced for editing the segmentation map interactively to re-modify the generated image according to the user's desires. Extensive experiments on the Caltech-UCSD Birds-200-2011 (CUB) dataset and Microsoft Common Objects in Context (MS COCO) datasets demonstrate our proposed method can enable interactive, flexible, and accurate image manipulation in real-time. Through qualitative and quantitative evaluations, we show that the proposed model outperforms other state-of-the-art methods.