While academic metrics such as transcripts and GPA are commonly used to evaluate students' knowledge acquisition, there is a lack of comprehensive metrics to measure their preparedness for the challenges of post-graduation life. This research paper explores the impact of various factors on university students' readiness for change and transition, with a focus on their preparedness for careers. The methodology employed in this study involves designing a survey based on Paul J. Mayer's "The Balance Wheel" to capture students' sentiments on various life aspects, including satisfaction with the educational process and expectations of salary. The collected data from a KBTU student survey (n=47) were processed through machine learning models: Linear Regression, Support Vector Regression (SVR), Random Forest Regression. Subsequently, an intelligent system was built using these models and fuzzy sets. The system is capable of evaluating graduates' readiness for their future careers and demonstrates a high predictive power. The findings of this research have practical implications for educational institutions. Such an intelligent system can serve as a valuable tool for universities to assess and enhance students' preparedness for post-graduation challenges. By recognizing the factors contributing to students' readiness for change, universities can refine curricula and processes to better prepare students for their career journeys.