Abstract:In today's world, making decisions as a group is common, whether choosing a restaurant or deciding on a holiday destination. Group decision-making (GDM) systems play a crucial role by facilitating consensus among participants with diverse preferences. Discussions are one of the main tools people use to make decisions. When people discuss alternatives, they use natural language to express their opinions. Traditional GDM systems generally require participants to provide explicit opinion values to the system. However, in real-life scenarios, participants often express their opinions through some text (e.g., in comments, social media, messengers, etc.). This paper introduces a sentiment and emotion-aware multi-criteria fuzzy GDM system designed to enhance consensus-reaching effectiveness in group settings. This system incorporates natural language processing to analyze sentiments and emotions expressed in textual data, enabling an understanding of participant opinions besides the explicit numerical preference inputs. Once all the experts have provided their preferences for the alternatives, the individual preferences are aggregated into a single collective preference matrix. This matrix represents the collective expert opinion regarding the other options. Then, sentiments, emotions, and preference scores are inputted into a fuzzy inference system to get the overall score. The proposed system was used for a small decision-making process - choosing the hotel for a vacation by a group of friends. Our findings demonstrate that integrating sentiment and emotion analysis into GDM systems allows everyone's feelings and opinions to be considered during discussions and significantly improves consensus among participants.
Abstract:Computer-mediated communication has become more important than face-to-face communication in many contexts. Tracking emotional dynamics in chat conversations can enhance communication, improve services, and support well-being in various contexts. This paper explores a hybrid approach to tracking emotional dynamics in chat conversations by combining DistilBERT-based text emotion detection and emoji sentiment analysis. A Twitter dataset was analyzed using various machine learning algorithms, including SVM, Random Forest, and AdaBoost. We contrasted their performance with DistilBERT. Results reveal DistilBERT's superior performance in emotion recognition. Our approach accounts for emotive expressions conveyed through emojis to better understand participants' emotions during chats. We demonstrate how this approach can effectively capture and analyze emotional shifts in real-time conversations. Our findings show that integrating text and emoji analysis is an effective way of tracking chat emotion, with possible applications in customer service, work chats, and social media interactions.
Abstract:Nowadays, deep learning models are increasingly required to be both interpretable and highly accurate. We present an approach that integrates Kolmogorov-Arnold Network (KAN) classification heads and Fuzzy Pooling into convolutional neural networks (CNNs). By utilizing the interpretability of KAN and the uncertainty handling capabilities of fuzzy logic, the integration shows potential for improved performance in image classification tasks. Our comparative analysis demonstrates that the modified CNN architecture with KAN and Fuzzy Pooling achieves comparable or higher accuracy than traditional models. The findings highlight the effectiveness of combining fuzzy logic and KAN to develop more interpretable and efficient deep learning models. Future work will aim to expand this approach across larger datasets.
Abstract:Color is integral to human experience, influencing emotions, decisions, and perceptions. This paper presents a comparative analysis of various color models' alignment with human visual perception. The study evaluates color models such as RGB, HSV, HSL, XYZ, CIELAB, and CIELUV to assess their effectiveness in accurately representing how humans perceive color. We evaluate each model based on its ability to accurately reflect visual color differences and dominant palette extraction compatible with the human eye. In image processing, accurate assessment of color difference is essential for applications ranging from digital design to quality control. Current color difference metrics do not always match how people see colors, causing issues in accurately judging subtle differences. Understanding how different color models align with human visual perception is crucial for various applications in image processing, digital media, and design.
Abstract:Face recognition systems are increasingly used in biometric security for convenience and effectiveness. However, they remain vulnerable to spoofing attacks, where attackers use photos, videos, or masks to impersonate legitimate users. This research addresses these vulnerabilities by exploring the Vision Transformer (ViT) architecture, fine-tuned with the DINO framework. The DINO framework facilitates self-supervised learning, enabling the model to learn distinguishing features from unlabeled data. We compared the performance of the proposed fine-tuned ViT model using the DINO framework against a traditional CNN model, EfficientNet b2, on the face anti-spoofing task. Numerous tests on standard datasets show that the ViT model performs better than the CNN model in terms of accuracy and resistance to different spoofing methods. Additionally, we collected our own dataset from a biometric application to validate our findings further. This study highlights the superior performance of transformer-based architecture in identifying complex spoofing cues, leading to significant advancements in biometric security.
Abstract:Developing software projects allows students to put knowledge into practice and gain teamwork skills. However, assessing student performance in project-oriented courses poses significant challenges, particularly as the size of classes increases. The current paper introduces a fuzzy intelligent system designed to evaluate academic software projects using object-oriented programming and design course as an example. To establish evaluation criteria, we first conducted a survey of student project teams (n=31) and faculty (n=3) to identify key parameters and their applicable ranges. The selected criteria - clean code, use of inheritance, and functionality - were selected as essential for assessing the quality of academic software projects. These criteria were then represented as fuzzy variables with corresponding fuzzy sets. Collaborating with three experts, including one professor and two course instructors, we defined a set of fuzzy rules for a fuzzy inference system. This system processes the input criteria to produce a quantifiable measure of project success. The system demonstrated promising results in automating the evaluation of projects. Our approach standardizes project evaluations and helps to reduce the subjective bias in manual grading.
Abstract:In the realm of software development, testing is crucial for ensuring software quality and adherence to requirements. However, it can be time-consuming and resource-intensive, especially when dealing with large and complex software systems. Test case prioritization (TCP) is a vital strategy to enhance testing efficiency by identifying the most critical test cases for early execution. This paper introduces a novel fuzzy logic-based approach to automate TCP, using fuzzy linguistic variables and expert-derived fuzzy rules to establish a link between test case characteristics and their prioritization. Our methodology utilizes two fuzzy variables - failure rate and execution time - alongside two crisp parameters: Prerequisite Test Case and Recently Updated Flag. Our findings demonstrate the proposed system capacity to rank test cases effectively through experimental validation on a real-world software system. The results affirm the practical applicability of our approach in optimizing the TCP and reducing the resource intensity of software testing.
Abstract:Watching movies is one of the social activities typically done in groups. Emotion is the most vital factor that affects movie viewers' preferences. So, the emotional aspect of the movie needs to be determined and analyzed for further recommendations. It can be challenging to choose a movie that appeals to the emotions of a diverse group. Reaching an agreement for a group can be difficult due to the various genres and choices. This paper proposes a novel approach to group movie suggestions by examining emotions from three different channels: movie descriptions (text), soundtracks (audio), and posters (image). We employ the Jaccard similarity index to match each participant's emotional preferences to prospective movie choices, followed by a fuzzy inference technique to determine group consensus. We use a weighted integration process for the fusion of emotion scores from diverse data types. Then, group movie recommendation is based on prevailing emotions and viewers' best-loved movies. After determining the recommendations, the group's consensus level is calculated using a fuzzy inference system, taking participants' feedback as input. Participants (n=130) in the survey were provided with different emotion categories and asked to select the emotions best suited for particular movies (n=12). Comparison results between predicted and actual scores demonstrate the efficiency of using emotion detection for this problem (Jaccard similarity index = 0.76). We explored the relationship between induced emotions and movie popularity as an additional experiment, analyzing emotion distribution in 100 popular movies from the TMDB database. Such systems can potentially improve the accuracy of movie recommendation systems and achieve a high level of consensus among participants with diverse preferences.
Abstract:Social activities often done in groups include watching television or movies. Choosing a film that appeals to the emotional inclinations of a varied group can be tricky. One of the most difficult aspects of making group movie suggestions is achieving agreement among members. At the same time, emotion is the most important component that connects the film and the viewer. Current research proposes a methodology for group movie selection that employs emotional analysis from numerous sources, such as film posters, soundtracks, and text. Our research stands at the intersection of emotion recognition technology in music, text, color images, and group decision-making, providing a practical tool for navigating the complex dynamics of film selection in a group setting. The survey participants were given emotion categories and asked to select the emotions that best suited a particular movie. Preliminary comparison results between real and predicted scores show the effectiveness of using emotion detection for group movie recommendation. Such systems have the potential to enhance movie recommendation systems.
Abstract:The nutritional quality of diets has significantly deteriorated over the past two to three decades, a decline often underestimated by the people. This deterioration, coupled with a hectic lifestyle, has contributed to escalating health concerns. Recognizing this issue, researchers at Harvard have advocated for a balanced nutritional plate model to promote health. Inspired by this research, our paper introduces an innovative Image-Based Dietary Assessment system aimed at evaluating the healthiness of meals through image analysis. Our system employs advanced image segmentation and classification techniques to analyze food items on a plate, assess their proportions, and calculate meal adherence to Harvard's healthy eating recommendations. This approach leverages machine learning and nutritional science to empower individuals with actionable insights for healthier eating choices. Our four-step framework involves segmenting the image, classifying the items, conducting a nutritional assessment based on the Harvard Healthy Eating Plate research, and offering tailored recommendations. The prototype system has shown promising results in promoting healthier eating habits by providing an accessible, evidence-based tool for dietary assessment.