Although influence maximization has been studied extensively in the past, the majority of works focus on the algorithmic aspect of the problem, overlooking several practical improvements that can be derived by data-driven observations or the inclusion of machine learning. The main challenges lie on the one hand on the computational demand of the algorithmic solution which restricts the scalability, and on the other the quality of the predicted influence spread. In this work, we propose IMINFECTOR (Influence Maximization with INFluencer vECTORs), a method that aspires to address both problems using representation learning. It comprises of two parts. The first is based on a multi-task neural network that uses logs of diffusion cascades to embed diffusion probabilities between nodes as well as the ability of a node to create massive cascades. The second part uses diffusion probabilities to reformulate influence maximization as a weighted bipartite matching problem and capitalizes on the learned representations to find a seed set using a greedy heuristic approach. We apply our method in three sizable networks accompanied by diffusion cascades and evaluate it using unseen diffusion cascades from future time steps. We observe that our method outperforms various competitive algorithms and metrics from the diverse landscape of influence maximization, in terms of prediction precision and seed set quality.