The prediction for information diffusion on social networks has great practical significance in marketing and public opinion control. Cascade prediction aims to predict the individuals who will potentially repost the message on the social network. One kind of methods either exploit demographical, structural, and temporal features for prediction, or explicitly rely on particular information diffusion models. The other kind of models are fully data-driven and do not require a global network structure. Thus massive diffusion prediction models based on network embedding are proposed. These models embed the users into the latent space using their cascade information, but are lack of consideration for the intervene among users when embedding. In this paper, we propose an independent asymmetric embedding method to learn social embedding for cascade prediction. Different from existing methods, our method embeds each individual into one latent influence space and multiple latent susceptibility spaces. Furthermore, our method captures the co-occurrence regulation of user combination in cascades to improve the calculating effectiveness. The results of extensive experiments conducted on real-world datasets verify both the predictive accuracy and cost-effectiveness of our approach.