Humans naturally attribute utterances of direct speech to their speaker in literary works. When attributing quotes, we process contextual information but also access mental representations of characters that we build and revise throughout the narrative. Recent methods to automatically attribute such utterances have explored simulating human logic with deterministic rules or learning new implicit rules with neural networks when processing contextual information. However, these systems inherently lack \textit{character} representations, which often leads to errors on more challenging examples of attribution: anaphoric and implicit quotes. In this work, we propose to augment a popular quotation attribution system, BookNLP, with character embeddings that encode global information of characters. To build these embeddings, we create DramaCV, a corpus of English drama plays from the 15th to 20th century focused on Character Verification (CV), a task similar to Authorship Verification (AV), that aims at analyzing fictional characters. We train a model similar to the recently proposed AV model, Universal Authorship Representation (UAR), on this dataset, showing that it outperforms concurrent methods of characters embeddings on the CV task and generalizes better to literary novels. Then, through an extensive evaluation on 22 novels, we show that combining BookNLP's contextual information with our proposed global character embeddings improves the identification of speakers for anaphoric and implicit quotes, reaching state-of-the-art performance. Code and data will be made publicly available.