A current assumption of most clustering methods is that the training data and future data are taken from the same distribution. However, this assumption may not hold in some real-world scenarios. In this paper, we propose an importance sampling based deterministic annealing approach (ISDA) for clustering problems which minimizes the worst case of expected distortions under the constraint of distribution deviation. The distribution deviation constraint can be converted to the constraint over a set of weight distributions centered on the uniform distribution derived from importance sampling. The objective of the proposed approach is to minimize the loss under maximum degradation hence the resulting problem is a constrained minimax optimization problem which can be reformulated to an unconstrained problem using the Lagrange method and be solved by the quasi-newton algorithm. Experiment results on synthetic datasets and a real-world load forecasting problem validate the effectiveness of the proposed ISDA. Furthermore, we show that fuzzy c-means is a special case of ISDA with the logarithmic distortion. This observation sheds a new light on the relationship between fuzzy c-means and deterministic annealing clustering algorithms and provides an interesting physical and information-theoretical interpretation for fuzzy exponent $m$.