The identification and removal of systematic errors in object detectors can be a prerequisite for their deployment in safety-critical applications like automated driving and robotics. Such systematic errors can for instance occur under very specific object poses (location, scale, orientation), object colors/textures, and backgrounds. Real images alone are unlikely to cover all relevant combinations. We overcome this limitation by generating synthetic images with fine-granular control. While generating synthetic images with physical simulators and hand-designed 3D assets allows fine-grained control over generated images, this approach is resource-intensive and has limited scalability. In contrast, using generative models is more scalable but less reliable in terms of fine-grained control. In this paper, we propose a novel framework that combines the strengths of both approaches. Our meticulously designed pipeline along with custom models enables us to generate street scenes with fine-grained control in a fully automated and scalable manner. Moreover, our framework introduces an evaluation setting that can serve as a benchmark for similar pipelines. This evaluation setting will contribute to advancing the field and promoting standardized testing procedures.