As machine learning algorithms are deployed on sensitive data in critical decision making processes, it is becoming increasingly important that they are also private and fair. In this paper, we show that, when the data has a long-tailed structure, it is not possible to build accurate learning algorithms that are both private and results in higher accuracy on minority subpopulations. We further show that relaxing overall accuracy can lead to good fairness even with strict privacy requirements. To corroborate our theoretical results in practice, we provide an extensive set of experimental results using a variety of synthetic, vision~(\cifar and CelebA), and tabular~(Law School) datasets and learning algorithms.