Twitter is now a gold marketing tool for entities concerned with online reputation. To automatically monitor online reputation of entities , systems have to deal with ambiguous entity names, polarity detection and topic detection. We propose three approaches to tackle the first issue: monitoring Twitter in order to find relevant tweets about a given entity. Evaluated within the framework of the RepLab-2013 Filtering task, each of them has been shown competitive with state-of-the-art approaches. Mainly we investigate on how much merging strategies may impact performances on a filtering task according to the evaluation measure.