In recent years, deep learning researchers have focused on how to find the interpretability behind deep learning models. However, today cognitive competence of human has not completely covered the deep learning model. In other words, there is a gap between the deep learning model and the cognitive mode. How to evaluate and shrink the cognitive gap is a very important issue. In this paper, the interpretability evaluation, the relationship between the generalization performance and the interpretability of the model and the method for improving the interpretability are concerned. A universal learning framework is put forward to solve the equilibrium problem between the two performances. The uniqueness of solution of the problem is proved and condition of unique solution is obtained. Probability upper bound of the sum of the two performances is analyzed.