Learning-based video compression is currently one of the most popular research topics, offering the potential to compete with conventional standard video codecs. In this context, Implicit Neural Representations (INRs) have previously been used to represent and compress image and video content, demonstrating relatively high decoding speed compared to other methods. However, existing INR-based methods have failed to deliver rate quality performance comparable with the state of the art in video compression. This is mainly due to the simplicity of the employed network architectures, which limit their representation capability. In this paper, we propose HiNeRV, an INR that combines bilinear interpolation with novel hierarchical positional encoding. This structure employs depth-wise convolutional and MLP layers to build a deep and wide network architecture with much higher capacity. We further build a video codec based on HiNeRV and a refined pipeline for training, pruning and quantization that can better preserve HiNeRV's performance during lossy model compression. The proposed method has been evaluated on both UVG and MCL-JCV datasets for video compression, demonstrating significant improvement over all existing INRs baselines and competitive performance when compared to learning-based codecs (72.3% overall bit rate saving over HNeRV and 43.4% over DCVC on the UVG dataset, measured in PSNR).