Tensor classification has gained prominence across various fields, yet the challenge of handling partially observed tensor data in real-world applications remains largely unaddressed. This paper introduces a novel approach to tensor classification with incomplete data, framed within the tensor high-dimensional linear discriminant analysis. Specifically, we consider a high-dimensional tensor predictor with missing observations under the Missing Completely at Random (MCR) assumption and employ the Tensor Gaussian Mixture Model to capture the relationship between the tensor predictor and class label. We propose the Tensor LDA-MD algorithm, which manages high-dimensional tensor predictors with missing entries by leveraging the low-rank structure of the discriminant tensor. A key feature of our approach is a novel covariance estimation method under the tensor-based MCR model, supported by theoretical results that allow for correlated entries under mild conditions. Our work establishes the convergence rate of the estimation error of the discriminant tensor with incomplete data and minimax optimal bounds for the misclassification rate, addressing key gaps in the literature. Additionally, we derive large deviation results for the generalized mode-wise (separable) sample covariance matrix and its inverse, which are crucial tools in our analysis and hold independent interest. Our method demonstrates excellent performance in simulations and real data analysis, even with significant proportions of missing data. This research advances high-dimensional LDA and tensor learning, providing practical tools for applications with incomplete data and a solid theoretical foundation for classification accuracy in complex settings.