Purpose This article presents a case for a next-generation grid monitoring and control system, leveraging recent advances in generative artificial intelligence (AI), machine learning, and statistical inference. Advancing beyond earlier generations of wide-area monitoring systems built upon supervisory control and data acquisition (SCADA) and synchrophasor technologies, we argue for a monitoring and control framework based on the streaming of continuous point-on-wave (CPOW) measurements with AI-powered data compression and fault detection. Methods and Results: The architecture of the proposed design originates from the Wiener-Kallianpur innovation representation of a random process that transforms causally a stationary random process into an innovation sequence with independent and identically distributed random variables. This work presents a generative AI approach that (i) learns an innovation autoencoder that extracts innovation sequence from CPOW time series, (ii) compresses the CPOW streaming data with innovation autoencoder and subband coding, and (iii) detects unknown faults and novel trends via nonparametric sequential hypothesis testing. Conclusion: This work argues that conventional monitoring using SCADA and phasor measurement unit (PMU) technologies is ill-suited for a future grid with deep penetration of inverter-based renewable generations and distributed energy resources. A monitoring system based on CPOW data streaming and AI data analytics should be the basic building blocks for situational awareness of a highly dynamic future grid.