This paper proposes a generalizable, end-to-end deep learning-based method for relative pose regression between two images. Given two images of the same scene captured from different viewpoints, our algorithm predicts the relative rotation and translation between the two respective cameras. Despite recent progress in the field, current deep-based methods exhibit only limited generalization to scenes not seen in training. Our approach introduces a network architecture that extracts a grid of coarse features for each input image using the pre-trained LoFTR network. It subsequently relates corresponding features in the two images, and finally uses a convolutional network to recover the relative rotation and translation between the respective cameras. Our experiments indicate that the proposed architecture can generalize to novel scenes, obtaining higher accuracy than existing deep-learning-based methods in various settings and datasets, in particular with limited training data.