We present a novel method for graph partitioning, based on reinforcement learning and graph convolutional neural networks. The new reinforcement learning based approach is used to refine a given partitioning obtained on a coarser representation of the graph, and the algorithm is applied recursively. The neural network is implemented using graph attention layers, and trained using an advantage actor critic (A2C) agent. We present two variants, one for finding an edge separator that minimizes the normalized cut or quotient cut, and one that finds a small vertex separator. The vertex separators are then used to construct a nested dissection ordering for permuting a sparse matrix so that its triangular factorization will incur less fill-in. The partitioning quality is compared with partitions obtained using METIS and Scotch, and the nested dissection ordering is evaluated in the sparse solver SuperLU. Our results show that the proposed method achieves similar partitioning quality than METIS and Scotch. Furthermore, the method generalizes from one class of graphs to another, and works well on a variety of graphs from the SuiteSparse sparse matrix collection.