This paper presents a comprehensive analysis of critical point sets in two-layer neural networks. To study such complex entities, we introduce the critical embedding operator and critical reduction operator as our tools. Given a critical point, we use these operators to uncover the whole underlying critical set representing the same output function, which exhibits a hierarchical structure. Furthermore, we prove existence of saddle branches for any critical set whose output function can be represented by a narrower network. Our results provide a solid foundation to the further study of optimization and training behavior of neural networks.