Siamese trackers perform similarity matching with templates (i.e., target models) to recursively localize objects within a search region. Several strategies have been proposed in the literature to update a template based on the tracker output, typically extracted from the target search region in the current frame, and thereby mitigate the effects of target drift. However, this may lead to corrupted templates, limiting the potential benefits of a template update strategy. This paper proposes a model adaptation method for Siamese trackers that uses a generative model to produce a synthetic template from the object search regions of several previous frames, rather than directly using the tracker output. Since the search region encompasses the target, attention from the search region is used for robust model adaptation. In particular, our approach relies on an auto-encoder trained through adversarial learning to detect changes in a target object's appearance and predict a future target template, using a set of target templates localized from tracker outputs at previous frames. To prevent template corruption during the update, the proposed tracker also performs change detection using the generative model to suspend updates until the tracker stabilizes, and robust matching can resume through dynamic template fusion. Extensive experiments conducted on VOT-16, VOT-17, OTB-50, and OTB-100 datasets highlight the effectiveness of our method, along with the impact of its key components. Results indicate that our proposed approach can outperform state-of-art trackers, and its overall robustness allows tracking for a longer time before failure.