We derive a novel generative model from the simple act of Gaussian posterior inference. Treating the generated sample as an unknown variable to infer lets us formulate the sampling process in the language of Bayesian probability. Our model uses a sequence of prediction and posterior update steps to narrow down the unknown sample from a broad initial belief. In addition to a rigorous theoretical analysis, we establish a connection between our model and diffusion models and show that it includes Bayesian Flow Networks (BFNs) as a special case. In our experiments, we demonstrate improved performance over both BFNs and Variational Diffusion Models, achieving competitive likelihood scores on CIFAR10 and ImageNet.