Gated networks are networks that contain gating connections, in which the outputs of at least two neurons are multiplied. Initially, gated networks were used to learn relationships between two input sources, such as pixels from two images. More recently, they have been applied to learning activity recognition or multi-modal representations. The aims of this paper are threefold: 1) to explain the basic computations in gated networks to the non-expert, while adopting a standpoint that insists on their symmetric nature. 2) to serve as a quick reference guide to the recent literature, by providing an inventory of applications of these networks, as well as recent extensions to the basic architecture. 3) to suggest future research directions and applications.