The ability to estimate human intentions and interact with human drivers intelligently is crucial for autonomous vehicles to successfully achieve their objectives. In this paper, we propose a game theoretic planning algorithm that models human opponents with an iterative reasoning framework and estimates human latent cognitive states through probabilistic inference and active learning. By modeling the interaction as a partially observable Markov decision process with adaptive state and action spaces, our algorithm is able to accomplish real-time lane changing tasks in a realistic driving simulator. We compare our algorithm's lane changing performance in dense traffic with a state-of-the-art autonomous lane changing algorithm to show the advantage of iterative reasoning and active learning in terms of avoiding overly conservative behaviors and achieving the driving objective successfully.