Lightweight neural networks exchange fast inference for predictive strength. Conversely, large deep neural networks have low prediction error but incur prolonged inference times and high energy consumption on resource-constrained devices. This trade-off is unacceptable for latency-sensitive and performance-critical applications. Offloading inference tasks to a server is unsatisfactory due to the inevitable network congestion by high-dimensional data competing for limited bandwidth and leaving valuable client-side resources idle. This work demonstrates why existing methods cannot adequately address the need for high-performance inference in mobile edge computing. Then, we show how to overcome current limitations by introducing a novel training method to reduce bandwidth consumption in Machine-to-Machine communication and a generalizable design heuristic for resource-conscious compression models. We extensively evaluate our proposed method against a wide range of baselines for latency and compressive strength in an environment with asymmetric resource distribution between edge devices and servers. Despite our edge-oriented lightweight encoder, our method achieves considerably better compression rates.