Some of the tightest information-theoretic generalization bounds depend on the average information between the learned hypothesis and a \emph{single} training example. However, these sample-wise bounds were derived only for \emph{expected} generalization gap. We show that even for expected \emph{squared} generalization gap no such sample-wise information-theoretic bounds exist. The same is true for PAC-Bayes and single-draw bounds. Remarkably, PAC-Bayes, single-draw and expected squared generalization gap bounds that depend on information in pairs of examples exist.