We present a method for finding high density, low-dimensional structures in noisy point clouds. These structures are sets with zero Lebesgue measure with respect to the $D$-dimensional ambient space and belong to a $d<D$ dimensional space. We call them "singular features." Hunting for singular features corresponds to finding unexpected or unknown structures hidden in point clouds belonging to $\R^D$. Our method outputs well defined sets of dimensions $d<D$. Unlike spectral clustering, the method works well in the presence of noise. We show how to find singular features by first finding ridges in the estimated density, followed by a filtering step based on the eigenvalues of the Hessian of the density.