Multimodal sentiment analysis is a trending topic with the explosion of multimodal content on the web. Present studies in multimodal sentiment analysis rely on large-scale supervised data. Collating supervised data is time-consuming and labor-intensive. As such, it is essential to investigate the problem of few-shot multimodal sentiment analysis. Previous works in few-shot models generally use language model prompts, which can improve performance in low-resource settings. However, the textual prompt ignores the information from other modalities. We propose Multimodal Probabilistic Fusion Prompts, which can provide diverse cues for multimodal sentiment detection. We first design a unified multimodal prompt to reduce the discrepancy in different modal prompts. To improve the robustness of our model, we then leverage multiple diverse prompts for each input and propose a probabilistic method to fuse the output predictions. Extensive experiments conducted on three datasets confirm the effectiveness of our approach.