We study the highly practical but comparatively under-studied problem of latent-domain adaptation, where a source model should be adapted to a target dataset that contains a mixture of unlabelled domain-relevant and domain-irrelevant examples. Furthermore, motivated by the requirements for data privacy and the need for embedded and resource-constrained devices of all kinds to adapt to local data distributions, we focus on the setting of feed-forward source-free domain adaptation, where adaptation should not require access to the source dataset, and also be back propagation-free. Our solution is to meta-learn a network capable of embedding the mixed-relevance target dataset and dynamically adapting inference for target examples using cross-attention. The resulting framework leads to consistent improvement on strong ERM baselines. We also show that our framework sometimes even improves on the upper bound of domain-supervised adaptation, where only domain-relevant instances are provided for adaptation. This suggests that human annotated domain labels may not always be optimal, and raises the possibility of doing better through automated instance selection.