The issue concerning the significant decline in the stability of feature extraction for images subjected to large-angle affine transformations, where the angle exceeds 50 degrees, still awaits a satisfactory solution. Even ASIFT, which is built upon SIFT and entails a considerable number of image comparisons simulated by affine transformations, inevitably exhibits the drawbacks of being time-consuming and imposing high demands on memory usage. And the stability of feature extraction drops rapidly under large-view affine transformations. Consequently, we propose a method that represents an improvement over ASIFT. On the premise of improving the precision and maintaining the affine invariance, it currently ranks as the fastest feature extraction method for extra-affine images that we know of at present. Simultaneously, the stability of feature extraction regarding affine transformation images has been approximated to the maximum limits. Both the angle between the shooting direction and the normal direction of the photographed object (absolute tilt angle), and the shooting transformation angle between two images (transition tilt angle) are close to 90 degrees. The central idea of the method lies in obtaining the optimal parameter set by simulating affine transformation with the reference image. And the simulated affine transformation is reproduced by combining it with the Lanczos interpolation based on the optimal parameter set. Subsequently, it is combined with ORB, which exhibits excellent real-time performance for rapid orientation binary description. Moreover, a scale parameter simulation is introduced to further augment the operational efficiency.