In this paper, we present iPrescribe, a scalable low-latency architecture for recommending 'next-best-offers' in an online setting. The paper presents the design of iPrescribe and compares its performance for implementations using different real-time streaming technology stacks. iPrescribe uses an ensemble of deep learning and machine learning algorithms for prediction. We describe the scalable real-time streaming technology stack and optimized machine-learning implementations to achieve a 90th percentile recommendation latency of 38 milliseconds. Optimizations include a novel mechanism to deploy recurrent Long Short Term Memory (LSTM) deep learning networks efficiently.