This paper addresses the fairness issue within fluid antenna system (FAS)-assisted non-orthogonal multiple access (NOMA) and orthogonal multiple access (OMA) systems, where a single fixed-antenna base station (BS) transmits superposition-coded signals to two users, each with a single fluid antenna. We define fairness through the minimization of the maximum outage probability for the two users, under total resource constraints for both FAS-assisted NOMA and OMA systems. Specifically, in the FAS-assisted NOMA systems, we study both a special case and the general case, deriving a closed-form solution for the former and applying a bisection search method to find the optimal solution for the latter. Moreover, for the general case, we derive a locally optimal closed-form solution to achieve fairness. In the FAS-assisted OMA systems, to deal with the non-convex optimization problem with coupling of the variables in the objective function, we employ an approximation strategy to facilitate a successive convex approximation (SCA)-based algorithm, achieving locally optimal solutions for both cases. Empirical analysis validates that our proposed solutions outperform conventional NOMA and OMA benchmarks in terms of fairness.