Psychological research suggests the central role of event causality in human story understanding. Further, event causality has been heavily utilized in symbolic story generation. However, few machine learning systems for story understanding employ event causality, partially due to the lack of reliable methods for identifying open-world causal event relations. Leveraging recent progress in large language models (LLMs), we present the first method for event causality identification that leads to material improvements in computational story understanding. We design specific prompts for extracting event causal relations from GPT. Against human-annotated event causal relations in the GLUCOSE dataset, our technique performs on par with supervised models, while being easily generalizable to stories of different types and lengths. The extracted causal relations lead to 5.7\% improvements on story quality evaluation and 8.7\% on story video-text alignment. Our findings indicate enormous untapped potential for event causality in computational story understanding.