We describe Evalita-LLM, a new benchmark designed to evaluate Large Language Models (LLMs) on Italian tasks. The distinguishing and innovative features of Evalita-LLM are the following: (i) all tasks are native Italian, avoiding issues of translating from Italian and potential cultural biases; (ii) in addition to well established multiple-choice tasks, the benchmark includes generative tasks, enabling more natural interaction with LLMs; (iii) all tasks are evaluated against multiple prompts, this way mitigating the model sensitivity to specific prompts and allowing a fairer and objective evaluation. We propose an iterative methodology, where candidate tasks and candidate prompts are validated against a set of LLMs used for development. We report experimental results from the benchmark's development phase, and provide performance statistics for several state-of-the-art LLMs.