The acquisition of inductive bias through point-level contrastive learning holds paramount significance in point cloud pre-training. However, the square growth in computational requirements with the scale of the point cloud poses a substantial impediment to the practical deployment and execution. To address this challenge, this paper proposes an Effective Point-level Contrastive Learning method for large-scale point cloud understanding dubbed \textbf{EPContrast}, which consists of AGContrast and ChannelContrast. In practice, AGContrast constructs positive and negative pairs based on asymmetric granularity embedding, while ChannelContrast imposes contrastive supervision between channel feature maps. EPContrast offers point-level contrastive loss while concurrently mitigating the computational resource burden. The efficacy of EPContrast is substantiated through comprehensive validation on S3DIS and ScanNetV2, encompassing tasks such as semantic segmentation, instance segmentation, and object detection. In addition, rich ablation experiments demonstrate remarkable bias induction capabilities under label-efficient and one-epoch training settings.