With the widespread application of Large Language Models across various domains, their security issues have increasingly garnered significant attention from both academic and industrial communities. This study conducts sampling and normalization of the parameters of the LLM to generate visual representations and heatmaps of parameter distributions, revealing notable discrepancies in parameter distributions among certain layers within the hidden layers. Further analysis involves calculating statistical metrics for each layer, followed by the computation of a Comprehensive Sensitivity Score based on these metrics, which identifies the lower layers as being particularly sensitive to the generation of harmful content. Based on this finding, we employ a Freeze training strategy, selectively performing Supervised Fine-Tuning only on the lower layers. Experimental results demonstrate that this method significantly reduces training duration and GPU memory consumption while maintaining a high jailbreak success rate and a high harm score, outperforming the results achieved by applying the LoRA method for SFT across all layers. Additionally, the method has been successfully extended to other open-source large models, validating its generality and effectiveness across different model architectures. Furthermore, we compare our method with ohter jailbreak method, demonstrating the superior performance of our approach. By innovatively proposing a method to statistically analyze and compare large model parameters layer by layer, this study provides new insights into the interpretability of large models. These discoveries emphasize the necessity of continuous research and the implementation of adaptive security measures in the rapidly evolving field of LLMs to prevent potential jailbreak attack risks, thereby promoting the development of more robust and secure LLMs.