Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:Integer-arithmetic-only networks have been demonstrated effective to reduce computational cost and to ensure cross-platform consistency. However, previous works usually report a decline in the inference accuracy when converting well-trained floating-point-number (FPN) networks into integer networks. We analyze this phonomenon and find that the decline is due to activation quantization. Specifically, when we replace conventional ReLU with Bounded ReLU, how to set the bound for each neuron is a key problem. Considering the tradeoff between activation quantization error and network learning ability, we set an empirical rule to tune the bound of each Bounded ReLU. We also design a mechanism to handle the cases of feature map addition and feature map concatenation. Based on the proposed method, our trained 8-bit integer ResNet outperforms the 8-bit networks of Google's TensorFlow and NVIDIA's TensorRT for image recognition. We also experiment on VDSR for image super-resolution and on VRCNN for compression artifact reduction, both of which serve for regression tasks that natively require high inference accuracy. Our integer networks achieve equivalent performance as the corresponding FPN networks, but have only 1/4 memory cost and run 2x faster on modern GPUs. Our code and models can be found at github.com/HengRuiZ/brelu.