Lightweight image super-resolution (SR) aims to reconstruct high-resolution images from low-resolution images with limited computational costs. We find existing frequency-based SR methods cannot balance the reconstruction of overall structures and high-frequency parts. Meanwhile, these methods are inefficient for handling frequency features and unsuitable for lightweight SR. In this paper, we show introducing both wavelet and Fourier information allows our model to consider both high-frequency features and overall SR structure reconstruction while reducing costs. Specifically, we propose a dual-domain modulation network that utilize wavelet-domain modulation self-Transformer (WMT) plus Fourier supervision to modulate frequency features in addition to spatial domain modulation. Compared to existing frequency-based SR modules, our WMT is more suitable for frequency learning in lightweight SR. Experimental results show that our method achieves a comparable PSNR of SRFormer and MambaIR while with less than 50% and 60% of their FLOPs and achieving inference speeds 15.4x and 5.4x faster, respectively, demonstrating the effectiveness of our method on SR quality and lightweight. Codes will be released upon acceptance.