Enabling communications in the (sub-)THz band will call for massive multiple-input multiple-output (MIMO) arrays at either the transmit- or receive-side, or at both. To scale down the complexity and power consumption when operating across massive frequency and antenna dimensions, a sacrifice in the resolution of the digital-to-analog/analog-to-digital converters (DACs/ADCs) will be inevitable. In this paper, we analyze the extreme scenario where both the transmit- and receive-side are equipped with fully digital massive MIMO arrays and 1-bit DACs/ADCs, which leads to a system with minimum radio-frequency complexity, cost, and power consumption. Building upon the Bussgang decomposition, we derive a tractable approximation of the mean squared error (MSE) between the transmitted data symbols and their soft estimates. Numerical results show that, despite its simplicity, a doubly 1-bit quantized massive MIMO system with very large antenna arrays can deliver an impressive performance in terms of MSE and symbol error rate.