Human translators routinely have to translate rare inflections of words - due to the Zipfian distribution of words in a language. When translating from Spanish, a good translator would have no problem identifying the proper translation of a statistically rare inflection such as habl\'aramos. Note the lexeme itself, hablar, is relatively common. In this work, we investigate whether state-of-the-art bilingual lexicon inducers are capable of learning this kind of generalization. We introduce 40 morphologically complete dictionaries in 10 languages and evaluate three of the state-of-the-art models on the task of translation of less frequent morphological forms. We demonstrate that the performance of state-of-the-art models drops considerably when evaluated on infrequent morphological inflections and then show that adding a simple morphological constraint at training time improves the performance, proving that the bilingual lexicon inducers can benefit from better encoding of morphology.