https://github.com/plumprc/Failures-of-Influence-Functions-in-LLMs.
Influence functions aim to quantify the impact of individual training data points on a model's predictions. While extensive research has been conducted on influence functions in traditional machine learning models, their application to large language models (LLMs) has been limited. In this work, we conduct a systematic study to address a key question: do influence functions work on LLMs? Specifically, we evaluate influence functions across multiple tasks and find that they consistently perform poorly in most settings. Our further investigation reveals that their poor performance can be attributed to: (1) inevitable approximation errors when estimating the iHVP component due to the scale of LLMs, (2) uncertain convergence during fine-tuning, and, more fundamentally, (3) the definition itself, as changes in model parameters do not necessarily correlate with changes in LLM behavior. Our study thus suggests the need for alternative approaches for identifying influential samples. To support future work, our code is made available at