The degree of concentration, enthusiasm, optimism, and passion displayed by individual(s) while interacting with a machine is referred to as `user engagement'. Engagement comprises of behavioural, cognitive, and affect related cues. To create engagement predictions systems, which can work in real-world conditions it is quintessential to learn from rich diverse datasets. To this end, a large scale multi-faceted engagement in the wild dataset is proposed. 31 hours duration data of 127 participants representing different illumination conditions is recorded. Thorough experiments are performed exploring applicability of different features action units, eye gaze and head pose and transformers. To further validate the rich nature of the dataset, evaluation is also performed on the EngageWild dataset. The experiments show the usefulness of the proposed dataset. The code, models and dataset will be made publicly available.