Over-parameterization is a recent topic of much interest in the machine learning community. While over-parameterized neural networks are capable of perfectly fitting (interpolating) training data, these networks often perform well on test data, thereby contradicting classical learning theory. Recent work provided an explanation for this phenomenon by introducing the double descent curve, showing that increasing model capacity past the interpolation threshold can lead to a decrease in test error. In line with this, it was recently shown empirically and theoretically that increasing neural network capacity through width leads to double descent. In this work, we analyze the effect of increasing depth on test performance. In contrast to what is observed for increasing width, we demonstrate through a variety of classification experiments on CIFAR10 and ImageNet32 using ResNets and fully-convolutional networks that test performance worsens beyond a critical depth. We posit an explanation for this phenomenon by drawing intuition from the principle of minimum norm solutions in linear networks.