We propose a variant of VAE capable of disentangling both variations within each class and variations shared across all classes. To represent these generative factors of data, we introduce two sets of continuous latent variables, private variable and public variable. Our proposed framework models the private variable as a Mixture of Gaussian and the public variable as a Gaussian, respectively. Each mode of the private variable is responsible for a class of the discrete variable. Most of the previous attempts to integrate the discrete generative factors to disentanglement assume statistical independence between the continuous and discrete variables. However, this assumption does not hold in general. Our proposed model, which we call Discond-VAE, DISentangles the class-dependent CONtinuous factors from the Discrete factors by introducing the private variables. The experiments show that Discond-VAE can discover the private and public factors from data qualitatively and quantitatively.