This paper investigates uplink transmission from a single-antenna mobile phone to a cluster of satellites, emphasizing the role of inter-satellite links (ISLs) in facilitating cooperative signal detection. The study focuses on non-ideal ISLs, examining both terahertz (THz) and free-space optical (FSO) ISLs concerning their ergodic capacity. We present a practical scenario derived from the recent 3GPP standard, specifying the frequency band, bandwidth, user and satellite antenna gains, power levels, and channel characteristics in alignment with the latest 3GPP for non-terrestrial networks (NTN). Additionally, we propose a satellite selection method to identify the optimal satellite as the master node (MN), responsible for signal processing. This method takes into account both the user-satellite link and ISL channels. For the THz ISL analysis, we derive a closed-form approximation for ergodic capacity under two scenarios: one with instantaneous channel state information (CSI) and another with only statistical CSI shared between satellites. For the FSO ISL analysis, we present a closed-form approximate upper bound for ergodic capacity, accounting for the impact of pointing error loss. Furthermore, we evaluate the effects of different ISL frequencies and pointing errors on spectral efficiency. Simulation results demonstrate that multi-satellite multiple-input multiple-output (MIMO) satellite communication (SatCom) significantly outperforms single-satellite SatCom in terms of spectral efficiency. Additionally, our approximated upper bound for ergodic capacity closely aligns with results obtained from Monte Carlo simulations.