Diffusion Probabilistic Models (DPMs) have demonstrated exceptional performance in generative tasks, but this comes at the expense of sampling efficiency. To enhance sampling speed without sacrificing quality, various distillation-based accelerated sampling algorithms have been recently proposed. However, they typically require significant additional training costs and model parameter storage, which limit their practical application. In this work, we propose PCA-based Adaptive Search (PAS), which optimizes existing solvers for DPMs with minimal learnable parameters and training costs. Specifically, we first employ PCA to obtain a few orthogonal unit basis vectors to span the high-dimensional sampling space, which enables us to learn just a set of coordinates to correct the sampling direction; furthermore, based on the observation that the cumulative truncation error exhibits an ``S''-shape, we design an adaptive search strategy that further enhances the sampling efficiency and reduces the number of stored parameters to approximately 10. Extensive experiments demonstrate that PAS can significantly enhance existing fast solvers in a plug-and-play manner with negligible costs. For instance, on CIFAR10, PAS requires only 12 parameters and less than 1 minute of training on a single NVIDIA A100 GPU to optimize the DDIM from 15.69 FID (NFE=10) to 4.37.