In recent years, 3D vision has become a crucial field within computer vision, powering a wide range of applications such as autonomous driving, robotics, augmented reality (AR), and medical imaging. This field relies on the accurate perception, understanding, and reconstruction of 3D scenes from 2D data sources like images and videos. Diffusion models, originally designed for 2D generative tasks, offer the potential for more flexible, probabilistic approaches that can better capture the variability and uncertainty present in real-world 3D data. However, traditional methods often struggle with efficiency and scalability. In this paper, we review the state-of-the-art approaches that leverage diffusion models for 3D visual tasks, including but not limited to 3D object generation, shape completion, point cloud reconstruction, and scene understanding. We provide an in-depth discussion of the underlying mathematical principles of diffusion models, outlining their forward and reverse processes, as well as the various architectural advancements that enable these models to work with 3D datasets. We also discuss the key challenges in applying diffusion models to 3D vision, such as handling occlusions and varying point densities, and the computational demands of high-dimensional data. Finally, we discuss potential solutions, including improving computational efficiency, enhancing multimodal fusion, and exploring the use of large-scale pretraining for better generalization across 3D tasks. This paper serves as a foundation for future exploration and development in this rapidly evolving field.