It is important for sociable recommendation dialog systems to perform as both on-task content and social content to engage users and gain their favor. In addition to understand the user preferences and provide a satisfying recommendation, such systems must be able to generate coherent and natural social conversations to the user. Traditional dialog state tracking cannot be applied to such systems because it does not track the attributes in the social content. To address this challenge, we propose DEUX, a novel attribute-guided framework to create better user experiences while accomplishing a movie recommendation task. DEUX has a module that keeps track of the movie attributes (e.g., favorite genres, actors,etc.) in both user utterances and system responses. This allows the system to introduce new movie attributes in its social content. Then, DEUX has multiple values for the same attribute type which suits the recommendation task since a user may like multiple genres, for instance. Experiments suggest that DEUX outperforms all the baselines on being more consistent, fitting the user preferences better, and providing a more engaging chat experience. Our approach can be used for any similar problems of sociable task-oriented dialog system.