This work investigates the well-known problem of morphing attacks, which has drawn considerable attention in the biometrics community. Morphed images have exposed face recognition systems' susceptibility to false acceptance, resulting in dire consequences, especially for national security applications. To detect morphing attacks, we propose a method which is based on a discriminative 2D Discrete Wavelet Transform (2D-DWT). A discriminative wavelet sub-band can highlight inconsistencies between a real and a morphed image. We observe that there is a salient discrepancy between the entropy of a given sub-band in a bona fide image, and the same sub-band's entropy in a morphed sample. Considering this dissimilarity between these two entropy values, we find the Kullback-Leibler divergence between the two distributions, namely the entropy of the bona fide and the corresponding morphed images. The most discriminative wavelet sub-bands are those with the highest corresponding KL-divergence values. Accordingly, 22 sub-bands are selected as the most discriminative ones in terms of morph detection. We show that a Deep Neural Network (DNN) trained on the 22 discriminative sub-bands can detect morphed samples precisely. Most importantly, the effectiveness of our algorithm is validated through experiments on three datasets: VISAPP17, LMA, and MorGAN. We also performed an ablation study on the sub-band selection.